

THE IMPACT OF OUTDOOR LEARNING ON STUDENT ENGAGEMENT IN SCIENCE.

Do outdoor learning environments enhance student engagement and foster independent learning in primary science education?

PROBLEM STATEMENT

Limiting science to traditional classroom settings reduces student engagement, hinders independence and restricts deeper understanding.

PURPOSE OF STUDY

Explore if outdoor science boosts engagement, autonomy, and understanding.

INTERVENTION FRAMEWORK

Inquiry-based science tasks in outdoor settings designed to boost engagement, independence, and collaboration.

PEDAGOGICAL APPROACH: FACILITATING INDEPENDENCE AND OWNERSHIP

In this action research, these theories are applied through outdoor science tasks that:

- Encourage student ownership of learning
- Promote independence and peer engagement in real-world contexts
- The teacher's role shifts from direct instruction to facilitation, enabling students to direct their learning and gain a sense of achievement.

INTERVENTION

Key Stage 1 - Soil Erosion Study

Lower Key Stage 2 - Water Filtration System **Upper Key Stage 2** - Terrarium

Three-year groups across KS1. LKS2 and UKS2 participated, with approximately 60 students involved in each group.

THEORETICAL FRAMEWORK

- Student engagement is strengthened through autonomysupportive teaching practices that prioritize student choice and motivation.
- According to Self-Determination Theory (Deci & Ryan, 2000), students thrive when their needs for autonomy, competence, and relatedness are fulfilled.
- Burns et al. (2020) found that primary students showed greater cognitive, emotional, and behavioral engagement when teachers provided Choice in tasks; Opportunities for collaboration; Constructive, meaningful feedback.
- These findings align with constructivist theories (Piaget, 1952; Vygotsky, 1978), which emphasize:Learning through hands-on exploration and Social interaction and peer learning

TRACKING LEARNING THROUGH THE INQUIRY CYCLE

DATA ANALYSIS Lower Key Stage - 2 Upper Key Stage 2 Diagnostic Quiz (Before exploring) Diagnostic Quiz (Before exploring) Exploratory Quiz (After observation and discussion

CONCLUSION

- Outdoor learning improved scientific understanding across all key stages, aligning with Dillon et al. (2006), who found real-world experiences enhance engagement and comprehension.
- Inquiry-based outdoor tasks boosted independence and curiosity, echoing Harlen (2014), who emphasised the link between inquiry and deeper learning.
- Upper KS2 pupils showed the most progress, supporting Beames et al. (2012), who noted older students benefit more from independent outdoor learning.

LIMITATIONS

- Activities focused on a narrow range of science topics, excluding much of chemistry and physics.
- Limited variety of outdoor tasks may not fully represent the potential of outdoor learning across all disciplines.

IMPLICATIONS FOR TEACHING AND CURRICULUM DESIGN

- Use outdoor environments to make science learning real, relevant, and hands-on.
- Shift the teacher's role to a facilitator, guiding student-led exploration and inquiry.
- Balance classroom theory with practical experiences to boost independence and curiosity

"Children are born scientists. Give them the world—and they will explore it."

References:

- 1. Deci, E. L., & Ryan, R. M. (2000). The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268.
- 2. Gemmell, J. (2021). The effects of outdoor learning environments on engagement levels of primary school children. Journal of Outdoor Education, 15(2), 34-45. 3. Giamellaro, M., Thomas, C., & Lee, H. (2024). Impact of outdoor place-based learning on elementary school students' ability to make unsolicited observations about living organisms over time. Environmental Education Research, 30(1), 1-18.
- 4. Piaget, J. (1952). The origins of intelligence in children. International Universities Press.
- 5. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
- 6. Beames, S., Higgins, P. and Nicol, R. (2012) Learning outside the classroom: Theory and guidelines for practice. London: Routledge. 7. Dillon, J., Morris, M., O'Donnell, L., Rickinson, M. and Scott, W. (2006) Engaging and learning with the outdoors - the final report of the outdoor classroom in a rural context action research project. Slough: National Foundation for Educational Research (NFER).

8. Harlen, W. (2014) Working with Big Ideas of Science Education. Trieste: Global Network of Science Academies (IAP).

Alsha Sheikh **STEAM Teacher Victory Heights Primary** School, Dubai, UAE

