IB DP Maths HL AA IB1 (IB1)

Mary Assaad, Thomas Jacobs

	- ()					
Summary						
HL Calculus Integration Current						
Subject Mathem approac	atics: analysis and hes	Year IB1	Start date Week 4, May	Duration 6 weeks	weeks	
Course I	Course Part					
Description In this chapter we consider integral calculus. This involves antidifferentiation, which is the reverse process of differentiation.						
📽 Inquiry & Purpose						
Inquiry / Higher Order Questions						
Туре	Type Inquiry Questions					
Skills-based Exploring numerical integration techniques such as Simpson's rule or the trapezo Skills-based Prove the Fundamental theorem of calculus.					trapezoidal rule	
Develop an understanding of the concepts, principles and nature of mathematics						
Problem solving: Recall, select and use their knowledge of mathematical skills, results and models in both abstract and real-world contexts to solve problems.						
Syllabus Content						
Topic 5: Calculus						
SL Content						
SL 5.5						
Introduction to integration as anti-differentiation of functions of the form $f(x)=ax^n+bx^{n-1}+\dots$, where $n\in\mathbb{Z}, n eq-1$						

Deira International School

IB DP Maths HL AA IB1 (IB1)

Anti-differentiation with a boundary condition to determine the constant term.

Definite integrals using technology.

Area of a region enclosed by a curve y = f(x) and the x -axis, where f(x) > 0.

SL 5.9

Kinematic problems involving displacement s, velocity v, acceleration a and total distance travelled.

SL 5.10

Indefinite integral of $x^n (n \in \mathbb{Q}), \sin x, \cos x, rac{1}{x}$ and e^x

The composites of any of these with the linear function ax + b.

Integration by inspection (reverse chain rule) or by substitution for expressions of the form: $\int kg'(x)f(g(x))\mathrm{d}x$

SL 5.11

Definite integrals, including analytical approach.

Areas of a region enclosed by a curve y = f(x) and the *x*-axis, where f(x) can be positive or negative, without the use of technology.

Areas between curves.

AHL Content

AHL 5.15

Indefinite integrals of the derivatives of any of the above functions.

The composites of any of these with a linear function.

Use of partial fractions to rearrange the integrand.

AHL 5.16

Integration by substitution.

Integration by parts.

Repeated integration by parts.

AHL 5.17

Area of the region enclosed by a curve and the y- axis in a given interval.

Volumes of revolution about the x-axis or y-axis.

Deira International School

IB DP Maths HL AA IB1 (IB1)

🕴 ATL Skills

ask questions that required the use of knowledge from a different subject from the one you are teaching

include a reflection activity

make a link to TOK

Developing IB Learners

Deira International School HL Calculus Integration