

Deira International School

IB DP HL Applications and Interpretations HL (IB1)

Summary

HL Probability

Subject Start date Duration Year Week 4, January Mathematics: applications IB1 8 weeks

and interpretation

Course Part

Description

In this unit you will learn how to use sophisticated probability techniques to solve real life problems.

Inquiry & Purpose

(?) Inquiry / Higher Order Questions

Туре	Inquiry Questions
Skills-based	What are the limitations of discrete distributions?
Skills-based	How is the normal distribution model flawed when considering negative values in real life scenarios?

Curriculum

Develop logical and creative thinking, and patience and persistence in problem solving to instil confidence in using mathematics

Objectives

Knowledge and understanding: Recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of familiar and unfamiliar contexts.

Technology: Use technology accurately, appropriately and efficiently both to explore new ideas and to solve problems.

Syllabus Content

Topic 4: Statistics and probability

SL Content

Deira International School

IB DP HL Applications and Interpretations HL (IB1)

SL 4.5

Concepts of trial, outcome, equally likely outcomes, relative frequency, sample space (U) and event.

The probability of an event
$$A$$
 is $\mathrm{P}(A) = \dfrac{n(A)}{n(U)}$

The complementary events A and A' (not A).

Expected number of occurrences.

SL 4.6

Use of Venn diagrams, tree diagrams, sample space diagrams and tables of outcomes to calculate probabilities.

Combined events:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually exclusive events: $P(A \cap B) = 0$.

Conditional probability:
$$\mathrm{P}(A|B) = \frac{\mathrm{P}(A\cap B)}{\mathrm{P}(B)}$$

Independent events: $P(A \cap B) = P(A)P(B)$.

SL 4.7

Concept of discrete random variables and their probability distributions.

Expected value (mean), $\mathrm{E}(X)$ for discrete data.

Applications.

SL 4.8

Binomial distribution.

Mean and variance of the binomial distribution.

SL 4.9

The normal distribution and curve.

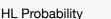
Properties of the normal distribution.

Diagrammatic representation.

Normal probability calculations.

Inverse normal calculations

AHL Content


AHL 4.15

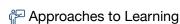
A linear combination of n independent normal random variables is normally distributed. In particular,

$$X \sim \mathrm{N}\left(\mu, \quad \sigma^2
ight) \Rightarrow \overline{X} \sim \mathrm{N}\left(\mu, rac{\sigma^2}{n}
ight)$$

Central limit theorem.

AHL 4.17

Deira International School


IB DP HL Applications and Interpretations HL (IB1)

Poisson distribution, its mean and variance.

Sum of two independent Poisson distributions has a Poisson distribution.

ATL Skills

Thinking

Developing IB Learners

☆ Learner Profile

Inquirers

Knowledgeable

Thinkers