

Thomas Jacobs

IB DP IB1 HL Applications (Mr Jacobs) (IB2)

Mi Summary			
HL- Networks and graph theory			
Subject Mathematics: applications and interpretation	Year IB2	Start date Week 4, November	Duration 6 weeks
Course Part			
Description In this unit you will learn how to use a network to maximise profits, minimise costs, find long-term conditions and many more logistical situations.			
📽 Inquiry & Purpose			
Inquiry / Higher Order Questions			
Туре	Inquiry Questions		
Content-based	How do you think navigation works in relation to a network problem?		
Skills-based	What circumstances might you have consider when using a network to model a cities traffic system?		
Aims			
Develop logical and creative thinking, and patience and persistence in problem solving to instil confidence in using mathematics			

♦ Objectives

Reasoning: Construct mathematical arguments through use of precise statements, logical deduction and inference and by the manipulation of mathematical expressions.

Inquiry approaches: Investigate unfamiliar situations, both abstract and from the real world, involving organizing and analyzing information, making conjectures, drawing conclusions, and testing their validity.

Syllabus Content

Topic 3: Geometry and trigonometry

AHL Content

IB DP IB1 HL Applications (Mr Jacobs) (IB2)

AHL 3.14

Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent edges. Degree of a vertex.

Simple graphs; complete graphs; weighted graphs.

Directed graphs; in degree and out degree of a directed graph.

Subgraphs; trees.

AHL 3.15

Adjacency matrices. Walks.

Number of k-length walks (or less than k-length walks) between two vertices.

Weighted adjacency tables.

Construction of the transition matrix for a strongly- connected, undirected or directed graph.

AHL 3.16

Tree and cycle algorithms with undirected graphs.

Walks, trails, paths, circuits, cycles.

Eulerian trails and circuits. Hamiltonian paths and cycles.

Minimum spanning tree (MST) graph algorithms:

Kruskal's and Prim's algorithms for finding minimum spanning trees.

Chinese postman problem and algorithm for solution, to determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least once.

Travelling salesman problem to determine the Hamiltonian cycle of least weight in a weighted complete graph.

Nearest neighbour algorithm for determining an upper bound for the travelling salesman problem.

Deleted vertex algorithm for determining a lower bound for the travelling salesman problem.

P Approaches to Learning

🤤 Thinking

Developing IB Learners

1 Learner Profile

Inquirers

Deira International School

HL- Networks and graph theory

IB DP IB1 HL Applications (Mr Jacobs) (IB2)

Knowledgeable

Thinkers