

Summary			
HL - Exponentials			
Subject Mathematics: applications and interpretation	Year IB2	Start date Week 1, October	Duration 3 weeks
Course Part Description In this unit you will learn how	exponential models are used to	o describe growth and decay site	uations.
🛸 Inquiry & Purpose)		
⑦ Inquiry / Higher Order	Questions		

Туре	Inquiry Questions		
Skills-based	What are the flaws of using an exponential growth model - particularly for large values of x/time?		
Skills-based	Are there any limitations to exponential models in real life populations situations? How do logistics models over come this?		

Curriculum

💮 Aims

Take action to apply and transfer skills to alternative situations, to other areas of knowledge and to future developments in their local and global communities

♦ Objectives

Problem solving: Recall, select and use their knowledge of mathematical skills, results and models in both abstract and real-world contexts to solve problems.

Syllabus Content

Topic 2: Functions

SL Content

SL 2.5

Deira International School

IB DP IB1 HL Applications (Mr Jacobs) (IB2)

$$f(x)=ka^x+c$$

Exponential growth and decay models. $f(x)=ka^{-x}+c$ $(\ {
m for}\ a>0)$
 $f(x)=k{
m e}^{rx}+c$

AHL Content

AHL 2.9

Exponential models to calculate half-life.

Natural logarithmic models: $f(x) = a + b \ln x$

Logistic models:
$$f(x) = rac{L}{1+C\mathrm{e}^{-kx}}; L, \quad C, \quad k>0$$

AHL 2.10

Scaling very large or small numbers using logarithms.

Linearizing data using logarithms to determine if the data has an exponential or a power relationship using best-fit straight lines to determine parameters.

Interpretation of log-log and semi-log graphs.

Topic 4: Statistics and probability

AHL Content

AHL 4.13

Non-linear regression.

ATL Skills

P Approaches to Learning

7 Thinking

Deira International School HL - Exponentials